Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Schinzel and Wójcik have shown that for every$$\alpha ,\beta \in \mathbb {Q}^{\times }\hspace{0.55542pt}{\setminus }\hspace{1.111pt}\{\pm 1\}$$ , there are infinitely many primespwhere$$v_p(\alpha )=v_p(\beta )=0$$ and where$$\alpha $$ and$$\beta $$ generate the same multiplicative group modp. We prove a weaker result in the same direction for algebraic numbers$$\alpha , \beta $$ . Let$$\alpha , \beta \in \overline{\mathbb {Q}} ^{\times }$$ , and suppose$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\alpha )|\ne 1$$ and$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\beta )|\ne 1$$ . Then for some positive integer$$C = C(\alpha ,\beta )$$ , there are infinitely many prime idealsPof Equation missing<#comment/>where$$v_P(\alpha )=v_P(\beta )=0$$ and where the group$$\langle \beta \bmod {P}\rangle $$ is a subgroup of$$\langle \alpha \bmod {P}\rangle $$ with$$[\langle \alpha \bmod {P}\rangle \,{:}\, \langle \beta \bmod {P}\rangle ]$$ dividingC. A key component of the proof is a theorem of Corvaja and Zannier bounding the greatest common divisor of shiftedS-units.more » « less
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Abstract We provide a uniform bound on the partial sums of multiplicative functions under very general hypotheses. As an application, we give a nearly optimal estimate for the count of$$n \le x$$for which the Alladi–Erdős function$$A(n) = \sum_{p^k \parallel n} k p$$takes values in a given residue class moduloq, whereqvaries uniformly up to a fixed power of$$\log x$$. We establish a similar result for the equidistribution of the Euler totient function$$\phi(n)$$among the coprime residues to the ‘correct’ moduliqthat vary uniformly in a similar range and also quantify the failure of equidistribution of the values of$$\phi(n)$$among the coprime residue classes to the ‘incorrect’ moduli.more » « lessFree, publicly-accessible full text available February 10, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            We provide a criterion to determine whether a real multiplicative function is a strong Benford sequence. The criterion implies that the -divisor functions, where , and Hecke eigenvalues of newforms, such as Ramanujan tau function, are strong Benford. In contrast to some earlier work, our approach is based on Halász’s Theorem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
